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The elastic-plastic plane strain state of an infinite wedge loaded by a uniform pressure 
on one face was examined in [I, 2], etc, where the state of an incompressible ideally plastic 
material corresponds to the condition of resistance to the maximal tangential stress 

~max = ( i / 2 )  I ~ z - -  ~21 <~ k, k = cons t  > O. ( 1 )  

In the plane oz, o 2 of the principal stresses (i) is interpreted by the strip AzA2BzB 2 (Fig. 
i). 

Besides the limit of resistance to shear, the limit of resistance to rupture (to the 
maximal tensile stress) [5, 6] is taken into account in [3, 4]. Such an approach permits 
bounding the domain Of computed normal stresses from above by the broken line AzAMBB z since 
(i) is supplemented by the condition of resistance to rupture 

gmax = ai ~< d (i = 1, 2), d = const  > O. ( 2 )  

h description of the state of a plastic medium for the limit resistance to the average 
tensile stress which corresponds to the condition 

a = ( , ~ +  ~2)/2 ~ s, s = const  > O. ( 3 )  

is given in [7, 8]. 

Starting from the conditions of resistance to shear (i) and to rupture (2), the domain 
of allowable stresses AzAMBB I can be minimized for fixed points A and B by considering (I) 
in combination with (3) for s = d - k and by conserving the condition of non-concavity of 
the domain AzABB z [6]. The domain in which the maximal stress components did not reach the 
limit values will be considered elastic. 

The present paper is devoted to an analysis of the limit state of an elastic-plastic 
wedge in the stress domain (i) and (3), i.e., under ultimate resistance to shear and to 
the average tensile stress. Three characteristic values of the ultimate load qz, q2, q~ 
are determined. The wedge is completely in the elastic state in the range 0 < q < qz- A 
zone of ultimate resistance to (2) or (3) occurs for qz~q<q~ according to the model taken. 
Moreover, condition (i) is realized in the zone of ultimate resistance to shear in the range 
q~q<qs. For q = q3 degeneration of the elastic zone into a line of stress discontinuity 
occurs. The load q3 governs the ultimate carrying capacity of the elastic-plastic wedge. 
The solutions are compared for conditions (I)-(3). 

In the general case the wedge is divided into three zones ~, 6, 6 (Fig. 2). We con- 
struct a solution for a uniform loading by a load q along the face OA by starting from the 
presence of the zones ~ and ~ with rectilinear boundaries AOB and DOC and homogeneous stress 
states. We denote the stress components in these zones by the superscripts minus and plus. 
A homogeneous stress state of ultimate resistance to shear 

~?  = O, ~ ?  = - -  2k~ X~ax = ( ~ 7  - -  0 ? ) / 2  = k. ( 4 )  

is realized in the zone a subjected to compression. The condition of ultimate resistance to 
the average tensile stress 

r  ot=--q,  ot=2s+q.  (5) 
is realized in the zone ~ subjected to tension in one of the principal directions. 

The points ~ and ~ in Fig. I correspond to the states (4) and (5) in the plane of the 
principal directions, the elements ~z, ~2 correspond to them in Fig. 2, and in Fig. 3 the 
stress states (4) and (5) are interpreted by the Moor diagrams of ~ and 6. 
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Let us introduce the polar r, 8 coordinate system with pole at the wedge apex O. The 
stress components in this coordinate system are determined in the zone ~ for r directed along 
OB by the relationships 

~ ,  ~ = - - k ( l •  ~ = k s i n 2 a .  (6 )  

For r directed along the boundary OC in the zone ~, the stress components in the polar 
coordinate system are found from the relationships 

~ , ,  ~ = s 4 - p c o s 2 8  , ~ = p s i n 2 ~ ,  p = s + q .  (7)  

I n  t h e  zone  6 we h a v e  a p r o b l e m  a b o u t  an i n f i n i t e  e l a s t i c  wedge BOC l o a d e d  a l o n g  t h e  
f a c e s  OB and OC by p r e s s u r e s  w i t h  componen t s  (6 )  and ( 7 ) ,  r e s p e c t i v e l y .  F o l l o w i n g  [9 ,  1 ] ,  
we w r i t e  t h e  s t r e s s e s  in  t h e  e l a s t i c  zone  in  t h e  fo rm 

(0), ~o(O) = A - - 2 D O 4 - ( B  s i n 2 e q - C c o s  20), %o(0) = D  + B c o s 2 0 - - C s i n 2 0 .  (8 )  

We a g r e e  t o  m e a s u r e  t h e  a n g l e  0 so  t h a t  O = 0 on t h e  b o u n d a r y  OB, and 8 = d on OC. Then 
t h e  c o n t i n u i t y  c o n d i t i o n  f o r  t h e  s t r e s s  c o m p o n e n t s  on t h e  e l a s t i c  zone  b o u n d a r i e s  can be 
w r i t t e n  in  t h e  fo rm o f  s i x  e q u a t i o n s  

(~  = ~7, ~o (~  = ~ ,  ~o  (~  = ~ ,  ( 9 )  
~ (8) = ~2, ~o (8) = ~ ,  ~o  (~) = ~ 

Four constants are easily determined from the four conjugate conditions for the normal 
stress components by taking account of (6)-(9) 

A = - - k ,  C = - - k c o s  2 ~  D = - - ( k + @ / 2 6 ~  B =  ( p c o s 2 ~ +  k c o s 2 ~ c o s 2 ~ ) / s i n 2 8 .  (10)  

T a k i n g  a c c o u n t  o f  ( 6 ) - ( 1 0 )  we o b t a i n  f r o m  t h e  two r e m a i n i n g  c o n j u g a t e  c o n d i t i o n s  f o r  t h e  
t a n g e n t i a l  c o m p o n e n t s  (9 )  

~(6)  = p cos2~ + k cos 2(~  + 6),: (ii) 

(8) = k cos 2~ 4- p cos 2 (~ 4- 6)~ 

where  ~ ( 6 ) =  (k 4- s)(26) -1 s in26.  E q u a t i o n s  (11)  s h o u l d  be s u p p l e m e n t e d  by t h e  g e o m e t r i c  c o n d i t i o n  

?==4-~ 4-6 (12) 

[~, ~, 6, u are the wedge angular dimensions and three of its zone (Fig. 2)]. The system 
(ii) and (12) completely governs the dependence between the load and the angular dimensions. 

Let us make the change of variable 

which satisfies condition (12) 
we have after manipulation 

2==?--g--%, 2~ =?--8 + %, 

identically, where X = ~ - ~. 

tg % = (k - -  p)(k ~- p)-t  tg ?. 

(13) 

Subtracting (Ii) term by term, 

(14) 

Combining (II) term by term and taking account of (14), we find 

r (6) = k 2 + ~ +  2kp cos 27~ 

where  0 ( 6 )  = (k + s ) 6  -z  s i n  5. S i n c e  p = s + q,  t h e n  (15)  g o v e r n s  t h e  d e p e n d e n c e  o f  t h e  
angular dimension 6 of the elastic zone on the applied load q for given parameter k, s, 7. 
For computations it is more convenient to use the explicit dependence q(~) obtained from 
( 1 5 ) :  

(i5) 
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q = - - s  - -  k cos 2y + ] f ~  (8) - -  k~sin~ 2y. ( i 6 )  

Evidently, the condition of ultimate resistance to shear occurs in zone 6 for p = k. 
From (15) there thus results 

q = 2k [t - -  8 (sin 8)-~cos ~]. ( 1 7 )  

This last dependence is presented in [i] for the ultimate resistance of an elastic-plastic 
wedge just to shear. 

For 6 § 0 we have ~(6) + k + s. We obtain from (16) that under the load 

qa= - - s  - -  k cos 2? + ~ ( k  + s) ~ -  k~sin~ 27 ( 1 8 )  

t h e  e l a s t i c  z o n e  6 d e g e n e r a t e s  i n t o  t h e  l i n e  s e p a r a t i n g  t h e  z o n e s  o f  u l t i m a t e  r e s i s t a n c e  t o  
s h e a r  a and  u l t i m a t e  r e s i s t a n c e  t o  t h e  mean t e n s i l e  s t r e s s  6 ,  w h e r e  a + 6 = ~ .  

S t a r t i n g  f r o m  ( 8 )  and  ( 1 0 ) ,  we d e t e r m i n e  t h e  d i f f e r e n c e  b e t w e e n  t h e  s t r e s s  c o m p o n e n t s  on 
t h e  b o u n d a r i e s  8 = O, 8 = 6:  

Tr0 (6 )  - -  TrO (0) = (k c o s  2~ - -  p cos 2fi) tg  8, 

a0(8) - -  as(0) = (k + ~ - -  (k cos 2~ + p cos 26), ( 1 9 )  

o r ( 8 )  - -  Or(0) = (k + ~ -b (k cos  2a  + p cos 2p). 

T h e r e f o r e ,  a s  6 + 0 t h e  t a n g e n t i a l  s t r e s s  c o m p o n e n t  r e m a i n s  c o n t i n u o u s  s i n c e  X r 0 ( 6 )  - X r 0 ( 0 )  
0. There results from (ii) that kcos 2a + p cos26 ~ k + s. The normal stress component o 0 
also remains continuous since 00(5) - o8(0) + 0. Evidently the component o r undergoes a dis- 
continuity: 

[ar] = lim [at (8) " ~ (0)] = 2 (k + s). ( 2 0 )  
5~0 

Therefore, the elastic zone 6 under the load (18) degenerates into a stress discontinuity 
line. The relationships (19) and (20) and the deductions associated with them hold also for 
the limit resistance to rupture [4]. The point C, 6 = 0, q = q3 corresponds to such a state 
in the q, 6 plane (Fig. 4). 

Let us return to (14). According to the sense of the conditions (1)-(3), we have p~k. 
Therefore, Z~0, and we establish from (13) that ~p, i.e., the dimension of the zone 
does not exceed the dimension of the zone 6. In the limit case ~ + 0 we have 6 + 6 + X from 
(12). The line 8 = 0 becomes the free boundary of the wedge. Taking account of (I0) the 
expressions (8) are reduced to the form 

~ ( 0 ) ,  ao(O ) = ( - -k)  ~ (--k),  ( 2 1 )  
v~0(0) = - - (k  + s)(28)-1+ (p cos 2~ + k cos 28) sin -1 28. 

Taking account of the first of the relationships (ii), we establish that the conditions 

~ = - - 2 k ,  % = 0 ,  ~ o = 0  (~ = O) 

are satisfied on the free boundary. 

The state mentioned is realized for the load q = q2 which we shall determine below. A 
further investigation is performed for the parameters having the values 
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=o,  6 + ~ = ~ ,  z = ~ ,  r  (22) 

The inequality • < k corresponds to the fact that the state of ultimate resistance to shear 
is not realized on the free boundary of the wedge OA. Only two zones ~ and 6 abutting each 
other and the faces OD, OA hold in the wedge. Taking account of (22), we find the following 

relationship from (14) 

u =  mp ( m =  ( t g y  + t g ~ ) / ( t g ? - - t g ~ ) ,  ~ = y - - 6 ) .  (23)  

T a k i n g  a c c o u n t  o f  (22)  and ( 2 3 ) ,  we o b t a i n  a q u a d r a t i c  e q u a t i o n  in  t h e  p a r a m e t e r  p f rom 
(15) 

a p 2 - - 2 b p - - c =  O~ (24)  

where a :  1 +  s ~ ( l - - g  ~) + 2 ~ c o s f ? ;  b = msg~; c : s ~ g  2, g =  6-1s in6 .  Taking into account that 
p > 0 in a physical sense, we find from (24) 

q = p - - s =  (b + ] , / -b-~ac) /a--s .  (25)  

The time of formation of the condition of ultimate resistance to shear on the free 
boundary corresponds to the characteristic case • = k. Such a state originates for a certain 
load value q = q=. This value seems to connect the load intervals governed by (16) and (25) 
for the states of a wedge with the three zones ~, B, 6 and with the two zones ~, 6, respec- 
tively. Consequently, to determine the value of q2 it is necessary to solve (16) and (25) 
jointly, i.e., to determine the coordinates qf, 62 of the point of intersection B of the 
curves (16) and (25) on the q, 6 plane (see Fig. 4). 

Let us consider the limit case B = 0, 6 = u According to (23), we have ~ = i, ~ = p. 
The whole wedge is in the elastic state; the state of ultimate resistance to the mean tensile 
stress q = ql, ~ = ql + 2s is realized only on the loaded face. The coefficients in (24) 
take on the values q = ql, ~ = q~ + 2s is realized only on the loaded face. The coeffi- 
cients in (24) take on the values a = 4cosfy - gf, b = sg 2, c = sfg ~, g = T -IsinY. From 
(25) we find the characteristic load 

q l =  P l - -  S (Pl = s ( f ?  ctg ? - -  i)- l) ,  (26)  

to which the point A in Fig. 4 corresponds. If the mean stress on the loaded face is less 
than the limit of the resistance to the mean stress (o < s), then on this face 

p = ~(27 ctg y - -  t ) - '  < Pi. (27)  

Therefore, the wedge is completely in the elastic state in the load range 0 < q < ql. 
Two zones hold in the q1~q<q2 range: the elastic 6 and the limit ~. Three qualitative 
states of the wedge material are realized for the load qf~q<q3: elastic in the zone 6, 
limit resistance in the shear zone ~ and in the mean stress zone $. 

The dependence of the angular dimension of the elastic zone that characterizes the 
wedge carrying capacity, on the applied load 6(q) is determined by (16) and (25). The ex- 
ample of such a dependence is illustrated by the line 1 in Fig. 4. 

Let us note that if the limit of the resistance to the mean stress satisfies the condi- 
tion s~k(2y cot y - i), then according to (27), the parameter p reaches the limit value k 
of the resistance to shear for o = k(fy cot y - i) as q and ~ increases, and since p = • in 
an elastic wedge for 6 = u the conditions of ultimate resistance to shear will occur simul- 
taneously on both faces. As the load increases further these conditions are propagated into 
the bulk of the wedge. This case is examined in detail in [i]. If 0 < s < k(2y cot y - i) 
then according to (26) a limit load ql can always be indicated for which the state of ulti- 
mate resistance to the mean tensile stress (s > 0) will occur. However, for angles satis- 
fying the condition ycoty < 1/2 the expression 2ycoty - 1 < 0 results in 0 < s < 0. This 
means that the condition of ultimate resistance to the mean tensile stress is unacceptable 
for a wedge with a sufficiently large aperture angle y-1 tanx > 2. Here utilization of the 
condition of resistance to rupture [4] can be utilized. 

An analogous analysis of the ultimate resistance of an elastic-plastic wedge to rupture 
is given in [3, 4, i0]. Let us note that the relationships (14) and (15) in which it should 
be taken into account that s = d - p can be applied to investigate the ultimate resistance to 
rupture. From the relationship (15) follows the dependence [4, i0] 

6-1sin 6 = (k + d - - p )  - 1 V k  ~ + p2 @ 2kp cos 2y. (28)  

Let us convert (28) to the form 
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ap ~ -~ 2 b 9 - ~ c  = O, (29) 

wnere a = |--g~; b = ~g~ ~ kcos2~; c = k2--~2g~; g = 5-1sinS; ~ ~k-]-d. We select the positive 
value of p from the roots of (29) and we determine the dependence between the dimensions of 
the elastic zone 6 and the load q in the interval q2 < q < qa for the ultimate resistance to 
shear and rupture 

q = 2p - -  d = 2 ( - -b  + V~Y'-'Y-'~-ac)/a - d. (30 )  

In the case of the resistance to rupture for the limit load ql < q < q2 we have a = 0, 
= ~--6, a~ =--2~ [n is defined exactly as in (23)]. From (15) we obtain 

a p ~ - - 2 b p - - c  = O. (31 )  

Here  a = l q - ~ 2 ~ - 2 ~ c o s 2 ? - - ( ~ - - i ) 2 g 2 ;  b = ( ~ - - i ) d g ~ ;  c =  ~ ;  g =  6 - 1 s i n 6 .  

D e t e r m i n i n g  t h e  p o s i t i v e  r o o t  p f rom ( 3 1 ) ,  we f i n d  t h e  d e p e n d e n c e  b e t w e e n  t h e  l o a d  q and 
t h e  d i m e n s i o n  o f  t h e  e l a s t i c  zone  f o r  t h e  i n t e r v a l  q~ < q < q2 f o r  t h e  u l t i m a t e  r e s i s t a n c e  t o  
r u p t u r e  

q =  2 p - - d =  2 ( b ~  V b  2 + a c ) / a - d .  (32 )  

The line 2 in Fig. 5 is the function d(q) given by (30) and (32), for the ultimate resis- 
tance of a wedge to shear and rupture, the line 3 is the dependence ~(q) for the ultimate 
resistance to just shear according to (17). Comparing the graphs shows that taking account 
of the ultimate resistance to the mean tensile stress can reduce the rated load to a greater 
degree than taking account of the ultimate resistance to rupture. The characteristic points 
A, B, C corresponding to the limit loads ql, q2, q3 for which qualitative changes occur in 
the limit state of an elastic-plastic wedge described above as well as for the ultimate resis- 
tance to rupture in [4, I0] hold on curves i and 2. 
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